
COLOUR GRADIENT USING GEOMETRIC ALGEBRA

Patrice Denis, Philippe Carre

Signal Images Communication Laboratory, University of Poitiers
Bat SP2MI, Teleport 2, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex

phone: +(33)549496571, fax: +(33)549496570
email: denis@sic.sp2mi.univ-poitiers.fr, carre@sic.sp2mi.univ-poitiers.fr

ABSTRACT

This paper uses the opportunity given by the formalism
of geometric algebras to perform colour image processing
by describing one colour with a geometric vector in the 3D
space. The paper proposes to manipulate colours in the RGB
space where properties such as saturation or luminance can
be described with the help of geometric operations. These
geometric operations are applied on vectors encoded inG3.
A spatial filtering operation on images with this model leads
to a colour gradient that can be used for example for colour
edge detection.

1. GEOMETRIC ALGEBRA

1.1 Introduction

TheGn geometric algebra is the 2n-dimensional vector space
extended with the geometric product from theV n which is a
n-dimensional vector space of real numbers. The geometric
algebra manipulates entities called multivectors that arethe
extension of vectors to higher dimension. They are graded-
algebras, that is to say scalars are represented in geometric
algebra by zero-dimensional quantities (0-graded) for exam-
ple. Vectors are one-dimensional directed quantities (also
represented by arrows), so 1-graded. In geometric algebra,
there are grade-2 entities termed bivectors which are plane
segments (for example circles) endowed with orientation. In
general ak-dimensional entity is known as ak-vector. For an
overview on geometric algebras see [3, 6, 7] for example.

In this paper we limit the focus onG3 algebra because we
use colour as vectors in the 3D space. In this algebra the ba-
sis (e0,e1,e2,e3,e23,e31,e12,e123) includes a scalar, vectors,
bivectors and a trivector (3-graded) also called pseudo-scalar.
The vectors are the same as those in the basis(e1,e2,e3)
of V 3. The bivectorse23, e31 and e12 are the geometric
product of two vectors,e2e3, e3e1 and e1e2 respectively.
The remaining parts are the scalare0 = 1 and the trivector
e123 = e1e2e3. Any multivectorA = A0e0 + A1e1 + A2e2 +
A3e3 + A23e23+ A31e31+ A12e12+ A123e123 ∈ G3 is a linear
combination of the basis entities also called blades. The k-
grade part of a multivectorA is given from the grade op-
erator 〈A〉k. For instance here, the 2-grade part ofA is
〈A〉2 = A23e23+A31e31+A12e12.

Colour image processing can be done using different
colour spaces. Most devices as screens for example use the
RGB space to display colours. In order to avoid numeric
approximations inescapable from conversions between dif-
ferent colour spaces, we choose to work directly in RGB.
This colour space will be considered with an Euclidian met-
ric to allow geometric calculations. CIE L*a*b* colour space
respects the human characteristics to distinct colours with

Euclidian metric so to perform Euclidian calculations from
RGB is an approximation. We propose to encode aN×M
colour imagef by its three colour components on the three
vector parts of a multivector inG3 : ∑N−1

x=0 ∑M−1
y=0 f1(x,y)e1 +

f2(x,y)e2 + f3(x,y)e3. f1(x,y), f2(x,y) and f3(x,y) are the
red, green and blue components of the pixel at coordinates
(x,y).

1.2 Products

Products in geometric algebras are the elementary opera-
tions:
• Outer Product: This product is also called exterior pro-

duct, denoted by∧. It generates the subspaces defined by
linearly independent combinations of blades. For exam-
ple, multiplying two linearly independent vectors gives a
bivector. If this bivector is again multiplied by a linearly
independent vector, the result is the pseudo-scalar.

• Inner Product: This product also called interior product
or left contraction, denoted by⌋, is used to give the notion
of orthogonality between two multivectors [2]. LetA be
a a-vector andB be ab-vector, thenA⌋B is a (b−a)-
vector subspace ofB and orthogonal to subspaceA. If
b < a thenA⌋B = 0. Two vectors are also orthogonal if
their inner product is null.

• Geometric Product: This product is an associative law
and distributive over the addition of multivectors. In ge-
neral, the result of the geometric product is a multivector.
If used on 1-vectorsa andb, this is the sum of the inner
and outer product:ab= a⌋b+ a∧b. Note also that the
geometric product is not commutative.

• Scalar Product: This product also called dot product, de-
noted by·, is used to define distances and modulus.

1.3 Definitions

Let A be a multivector ofG3.

• The reversion ofA, denoted̃A is defined byÃ = 〈A〉0+
〈A〉1−〈A〉2−〈A〉3. Reversion is needed to define Norm
and Inverse.

• Norm or Modulus of a multivectorA is defined by the
scalar product ofA by its reversion : |A| = A · Ã =√
〈AÃ〉0

Let now B in G3 be the geometric product ofn 1-vectors
(n∈ N), B is called a versor.
• Every versor has an inverse which means for everyB,

there is aB−1 assertingBB
−1 = 1; the inverseB−1 of

B equals to B̃

BB̃
.

• Note that every multivector is not invertible.
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2. GEOMETRIC TRANSFORMATIONS

Since the colour information of an image is encoded in the
vectorial part of aG3 multivector, we can manipulate a colour
in the 3D space with the geometric transformations given by
the algebra formalism (cf. Figure 1):
• Translation: Letv1,v2,vt) ∈ G 3

3 , thev1 translation byv2
is given by their sumvt = v1 +v2.

• Projection: Let(v1,v2,v‖)∈ G 3
3 , thev1 projection overv2

is given by :v‖ = (v1⌋v2)v
−1
2 .

• Rejection: Let(v1,v2,v⊥) ∈ G 3
3 , the rejection ofv1 with

respect tov2 is given by :v⊥ = (v1∧v2)v
−1
2 .

• Reflection: Let(v1,v2,vr) ∈ G 3
3 , the reflectionvr of v1

with respect tov2 is given by :vr = v2v1v−1
2 .

Figure 1: Basis geometric transformations from twoG3
vectors v1 and v2 : vt is thev1 translation byv2 ; v‖ is the
projection ofv1 on v2 ; v⊥ is the rejection ofv1 with respect
to v2 andvr is the reflection ofv1 with respect tov2.

3. COLOUR GRADIENT

From the study of the geometric transformations seen before
with the vectors ofG3, we propose to manipulate the colours
of images as vector in the 3D colour space. Felsberg used ge-
ometric algebras to characterize the luminosity variations in
greyscale images by a 2D analysis [5]. A first application of
geometric algebras with colour images was given by Schlem-
mer [11]. In his paper, Schlemmer decomposed images in the
LUV colour space and merged two gradients. The first one is
given by a Canny method on the luminosity part of the LUV
colour space. The second gradient is calculated with the two
chromatic partsU andV with a 2D gradient produced from
the vector field theory using the geometric algebraG2.

We propose in this paper to use the formalism ofG3, that
is to say to use the 3D information colour vectors, to perform
a colour edge detection. In fact, in the homogenous regions
of a natural colour image, pixels represented by vectors are
close to their neighbours in the colour space. A colour edge
can then be detected by a discontinuity in this neighbour-
hood. Geometric manipulations on the colour vectors of i-
mages can help us to detect such discontinuities.

A first approach was given by Sangwine in [9]. In his
paper, Sangwine proposed to use the formalism of quater-
nions to encode the colour information of an image. This

formalism is also able to manipulate vectors in the 3D space
but has limits. With the definition of the convolution on a
quaternionic colour image in [8, 10], he applied two specific
conjugate quaternionic filters on an image. This fulfilled an
average vector of every pixel in the filters neighbourhood re-
flected with respect to the greyscale axis. This reflection ope-
ration gives a comparison of the colour vectors in the neigh-
bourhood of the filters (dimension of filters is 3× 3). The
filtered image (cf. Figure 2) is a greyscale image almost ev-
erywhere, because in homogeneous regions the vector sum
of one pixel to its neighbours reflected by the grey axis has
a low saturation. Saturation is the distance between a colour
vector and the greyscale axis. This is the case ofq4 + µq3µ
for instance in Figure 3 where the quaternionµ represents
the greyscale axis,µ its conjugate andµq3µ the reflection of
q3 with respect toµ [9]. However, if you compare pixels like
q1 andq2 for example in Figure 3, you should detect a colour
edge as they are in colour opposition. Therefore, they present
a vector sum far from the grey axis. Edges are thus coloured
due to this high distance. The limit of this method is that
the filters can be applied horizontally from left to right and
from right to left for example but without giving the same re-
sults. In Figure 3, the vector sumq2+µq1µ is different from
the vector sumq1 + µq2µ produced when the filters are ap-
plied from opposite side (ie. leftwise or rightwise). An edge
with the Sangwine method will be detected by full coloured
pixels in opposition to homogenous regions which will be
represented by grey pixels.

(a) (b)

Figure 2:Sangwine edge detector result :(a) original im-
age; (b) zoom on the hat edge of the (a) picture after applica-
tion of Sangwine’s filters from right to left horizontally.

In this paper, we propose to detect edges by a colour gra-
dient. The method of Sangwine gives us the starting point.
In fact, we have a map of every pixel reflected by the grey
axis and compared to its neighbours. The more the vec-
tor result is far from the grey axis, the more it is far as
well from its neighbours. Convolution product is defined
in [4] with geometric algebras. The filtered image is given
by f ′(x,y) = ∑∑ l(τ1,τ2) f ((x− τ1),(y− τ2))r(τ1,τ2) with
Sangwine’s generalized filters toG3:

l =
1√
6

[
1 1 1
0 0 0
µ µ µ

]
r =

1√
6




1 1 1
0 0 0

µ−1 µ−1 µ−1




We suggest to determine the distance of Sangwine com-
parison vector sum to the grey axis: its saturation. This
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Figure 3: Sangwine’s edge detector scheme :µ is the
grey axis;µq1µ (resp. µq3µ) is the reflected vector ofq1
(resp.q3) with respect toµ ; the comparison vector between
q1 andq2 (resp. betweenq3 andq4) is given byq2 + µq1µ
(resp. q4 + µq3µ); q4 + µq3µ is near the grey axis so the
colour seems grey butq2 + µq1µ is far from the grey axis so
Sangwine’s filter has detected an edge as this vector is more
coloured.

distanceS is the norm of the rejection of the colour vector
sum v with respect to the grey axisµ . We then get it by
the formula of the rejection:S= |(v∧ µ)µ−1| (cf. Figure
4). The same coloursv1 andv2 can give two different colour
vectorsvsum1 = v2 + µv1µ and vsum2 = vq1 + µv2µ by the
Sangwine’s method. Note that our approach, which gives
a saturation gradient, is independent from the path (leftwise
or rightwise) applied to convolute the filters as the distance
S1 = |(vsum1 ∧ µ)µ−1| = |(vsum2 ∧ µ)µ−1|. This saturation
filtering is applied to the horizontal, vertical and both dia-
gonal directions byG3 convolution product. The maximum
of these directional gradients is then selected to make the fi-
nal colour gradient filter by maximum saturation. This final
filtering operation is not linear only because the ”maximum”
operator interferes.

As the method described before is a saturation gradient, a
problem appears: discontinuities in colours are not just satu-
ration ones. Indeed, two different colours can have the same
saturation; fortunately they can be disjoined by their differ-
ence of luminance.

To improve our algorithm we use the opportunity given
by the embedding of the Geometric Algebra. In fact, ap-
plying the geometric product:f ′′(x,y) = f (x,y)µ on every
pixel of the original image gives us a geometric comparison
of the pixels to the greyscale axis. Then the result of this
operation adds luminance information. It is the sum of two
parts: f (x,y)∧ µ + f (x,y)⌋µ . The first part,f (x,y)∧ µ , is
bivectorial and allows to compare the geometry between the
colour vector andµ . When this part is null for example, the
colour vector is collinear to the greyscale axis. The second
part,f (x,y)⌋µ , is a scalar, and the projection of the colour
vector over the grey axis : its intensity.

A boolean mask is produced by thresholding the bivec-

Figure 4: Saturation gradient : µv1µ (resp. µv3µ−1) is
the reflected vector ofv1 (resp. v3) with respect to the grey
axis µ ; our comparison vector betweenv1 andv2 (resp. be-
tweenv3 andv4) gives the distanceS= |(vsum∧ µ)µ−1| of
Sangwine’s vector sumvsum1 = v2 + µv1µ−1 (resp.vsum2 =

v4+µv3µ−1) from the grey axis (orange arrows); An edge is
detected by a high saturation like the orange arrow between
µ andv2 + µq1µ−1.

torial part where its norm is very small to keep the coordi-
nates where the colour vector is mere collinear toµ . We then
process a Sobel filtering on the scalar part to produce a lu-
minance gradient. Next, we apply the previous mask on this
gradient to keep only the needed luminance information. In
fact when a colour vector is quite collinear to the greyscale
axis, the saturation gradient given by the previous method
is not appropriate. Finally this is merged to the saturation
gradient in order to also detect greyscale variations. We see
for example in Figure 5 that the method using the luminance
information merged to the maximum saturation gradient is
more efficient as there are more details on the left parrot
head. There are as well big achromatic regions behind the
parrots detected with this method that are not with the satu-
ration gradient method only.

This geometric product used in the second part of our al-
gorithm could have been processed with a differentµ vector,
it would have given the same geometric comparison to the
colour vector chosen. As our previous gradient was based on
saturation, we needed to add luminance information and that
is why we chose to fillµ with the greyscale axis.

As the perception of colour is linked to the Human Visual
System, it may be difficult to compare results in colour im-
age processing with greyscale quantitative evaluation meth-
ods. We could have compared our results to colour images
segmentation databases but the goal of this paper was more
to show how using Geometric Algebra could help to perform
a colour gradient. We can nevertheless compare our method
visually to other ones in Figure 6. Di Zenzo method [12] is
based on a vectorial approach (c). The marginal method (b) is
a fusion of three different gradients done on the three colour
channels of the image. It is quite effective on this picture.
Results show that our method detects colour edges properly
with the house image where walls, roof and sky are well sep-
arated (e). Because the luminance in (e) is considered, we
see for instance the details of the window’s house, the drain-
pipe and the bottom of the roof that do not appear on the
maximum saturation approach (d). The Carron method (f)
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(a) (b)

(c) (d)

Figure 5: Colour gradient examples : (a) original image ;
(b) colour gradient with a luminance adjustment; (c) thresh-
olding on the colour gradient ; (d) thresholding on the maxi-
mum saturation gradient (without the modification of the fil-
ters).

is based on a hue marginal gradient but it is completed by
luminance and saturation gradients when hue is not enough
[1].

The edges obtained by our approach (d and e) are much
thicker than in all the other methods. The Carron approach
gives the best result but it is based on hue, luminance and
saturation variations whereas our method uses only the two
latter. Our method gives about the same results than the Di
Zenzo one with thicker edges. As we work directly in the
RGB colour space, we do not need to determine a geometric
distance between colours; we use a saturation distance plusa
luminance one when necessary.

To conclude, we propose an original method based on
geometric algebra to detect colour edges. This formalism
allows to manipulate and to compare the colours as vectors
in the 3D space. This method gives a geometrical gradient
that can detect colour edges properly compared to already
known approaches like Di Zenzo or Carron ones. It uses
RGB colour space but detects saturation and luminance vari-
ations with geometrical operations allowed byG3. As geo-
metric algebras are not limited to three dimensions, an exten-
sion to N-dimension from this work is possible. Multiband
images as those produced by satellite sensors for example are
being studied to be processed by geometrical filters inGn.

The authors thank Poitou-Charentes Region board which
has funded this work.
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